
IMC FILE

OFFICE OF NAVAL RESEARCH

Contract N00014-86-K-0043

CJ TECHNICAL REPORT No. 73

Light Scattering by a Phase Conjugator in the Four-Wave
Mixing Configuration

%" by

Henk F. Arnoldus and Thomas F. George0m

Prepared for Publication

in

Journal of Modern Optics

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

June 1988

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.

DTIC
ELEC T E

JL 2219IM

m re rjo



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

SForm Approved

REPORT DOCUMENTATION PAGE OMSNo. 070-0188

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution

Zb. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UBUFFALO/DC/88/TR-73

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Depts. Chemistry & Physics (If applikasbe)
State University of New York

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Fronczak Hall, Amherst Campus Chemistry Program

Buffalo, New York 14260 800 N. Quincy Street
Arlington, Virginia 22217

8.. NAME OF FUNDING / SPONSORING I8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION | (If applicable)

Office of Naval Research Contract N00014-86-K-0043

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Chemistry Program PROGRAM PROJECT I TASK WORK UNIT
800 N. Quincy Street ELEMENT NO. NO. NO ACCESSION NO.

Arlington, Virginia 22217 !
I1. TITLE (Include Security Classification)

Light Scattering by a Phase Conjugator in the Four-Wave Mixing Configuration
12. PERSONAL AUTHOR(S) Henk F. Arnoldus and Thomas F. George

13a. TYPE OF REPORT 113b. TIME COVERED J174.7DATE OF REPORT (Year, Month. Oay) IS. PAGE COUNT

16. SUPPLEMENTARY NOTATION I- FROM T June 1 45

Prepared for publication in Journal of Modern Optics r,-'' ' -+ - ,

17. COSATI CODES I 18. SUBJECT TERMS (Continue on reverse if necessary a d identify by block number)
FIELD GROUP SUB-GROUP I GHT SCATTERING, --iPHASE-tMATCHING RESONANCES,

P'HASE CONJUGATOR FINITE INCIDENCE ANGLE
FOURWAVE MIXING;,- SPECTROSCOPIC APPLICATIONS.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Reflection of travelling and evanescent plane waves by a four-wave mixing phase

conjugator is studied in detail. No restrictions are imposed on the nonlinear interaction
strength, the angle of incidence or the frequency mismatch between the pump beams and the
incoming waves. We-suatha the incident field is~weak compared to the pump fields,
which justifies a classical-field description of the pumps. The wave vectors, amplitudes
and phases for the various waves are evaluated, without the slowly-varying amplitude
approximation. Familiar phase-matchinrresonances for certain values of the interaction
length are recovered, and in addition strong resonances are found if the angle of incidence
is finite, and the incident light is not in perfect resonance with the pumps. The latter
resonances appear at the transitions from a travelling to an evanescent wave. The
significance of finite angles of incidence and evanescent waves for spectroscopic
applications is pointed out. ' Iq

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSFIED/UNLIMITED E9 SAME AS RPT. Q OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 122b. TELEPHONE (Include Area Cod)722c. OFFICE SYMBOL
Dr. David L. Nelson I(20 2 ) 66-441 I

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

',A' . -Uq



Journal of Modern Optics, in press

LIGHT SCATTERING BY A PHASE CONJUGATOR IN THE FOUR-WAVE MIXING CONFIGURATION

Henk F. Arnoldus and Thomas F. George
Department of Physics

239 Fronczak Hall
State University of New York at Buffalo

Buffalo, New York 14260, USA

Abstract

Reflection of travelling and evanescent plane waves by a four-wave mixing

phase conjugator is studied in detail. No restrictions are imposed on the

nonlinear interaction strength, the angle of incidence or the frequency

mismatch between the pump beams and the incoming waves. We only assume that

the incident field is weak compared to the pump fields, which justifies a

classical-field description of the pumps. The wave vectors, amplitudes and

phases for the various waves are evaluated, without the slowly-varying

amplitude approximation. Familiar phase-matching resonances for certain values

of the interaction length are recovered, and in addition strong resonances are

found if the angle of incidence is finite, and the incident light is not in

perfect resonance with the pumps. The latter resonances appear at the

transitions from a travelling to an evanescent wave. The significance of

finite angles of incidence and evanescent waves for spectroscopic applications

is pointed out.

PACS: 03.50.De, 41.10.Hv, 42.65.Hw
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i. Introduction

Among the many ways [1-3] of generating a phase-conjugated signal with

respect to a reference signal, the technique of four-wave mixing is the most

promising from an experimental point of view [4-9]. A nonlinear crystal (like

BaTiO3 ) or liquid (typically CS2 ) is irradiaLed by two counterpropagating

strong laser beams (the pumps) with intensity I. A third incident (weak) field

then couples to the pump fields through the third-order susceptibility X (3 ) ,

and the result is an electric polarization of the medium, which is proportional

to X(3) and the electric field component of the weak field. This induced

polarization then emits radiation which propagates out of the crystal. Under

certain conditions this generated fourth wave is the phaase-conjugated, or

time-reversed, replica of the incident field. Production of phase-conjugated

radiation is of great practical importance in optical engineering, because it

provides a method for correction of wavefront distortions.

In most applications the weak field is a nearly-monochromatic plane wave

with well-defined polarization, the angle of incidence on the crystal is almost

zero (usually a few degrees), and the coupling constant 7 X (3 ) I is very

small. For this configuration the generation of phase-conjugated waves is

well-understood [10-19]. There are, however, conceivable applications in which

these conditions do not hold. It has been predicted, for instance, that the

lifetime of an atom in the neighborhood of a phase conjugator (PC) is infinite,

as a result of the fact that an ideal PC focusses the emitted fluorescence

exactly back on the atom (20,21]. Consequently, the spectroscopic linewidth of

the atomic transition under consideration would be zero, which can have a great

impact on frequency standards. These predictions were derived under the

assumption of perfect phase conjugation. Since phase conjugation is equivalent

to time reversal, it is obvious that ideal PC's cannot exist (violates



causality). Nevertheless it can be anticipated that realistic PC's can

possibly be utilized to manipulate linewidths over a large range (in contrast

to the situation of atoms near a metal surface, where the change in lifetime is

at best a factor of two).

Emitted dipole radiation (fluorescence) by an atom in the vicinity of a PC

has plane-wave components, which are incident on the surface under every angle

of incidence. Besides that, a dipole field has evanescent components

(exponentially-decaying waves) [22], and the radiation is not monochromatic.

Furthermore, for contemporary high-power lasers the interaction parameter 7 a I

is not necessarily small. In this paper we present a general treatment of the

scattering of travelling and evanescent waves by a four-wave mixing PC, without

restrictions on the interaction strength, frequency, polarization or angle of

incidence.

2. The model

A nonlinear transparent crystal (X (3) 0 O, X(ipi3 ) - 0) occupies the region

0 > z > - A, A > 0, in an xyz Cartesian coordinate frame, and the regions z > 0

and z < -A are empty space. Two counter-propagating pump beams with intensity

I and frequency w (called the setting frequency of the PC) illuminate the

medium. Then the complex-valued coupling parameter is given by - c X (3 )I . We

shall assume that I is constant (no depletion of pumps) and that X(3 ) is

frequency independent. This means that the incident probe field must have a

bandwidth around w which is smaller than the frequency width of X In this

fashion we can avoid complicated notations, but it is straightforward to retain

the frequency dependence of 7 if necessary [23]. Furthermore, we assume that

the tensorial nature of X(3 ) is irrelevant, which can always be managed by a

proper choice of geometry.... .. .......o..
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The radiation field shall be represented by its electric and magnetic

components E(r,t) and B(r,t), respectively, and charges and currents by a

polarization density P(r,t). It is advantageous to adopt a Fourier transform

with respect to time,

- fdt eiWt E(r,t) , w real, (2.1)

and since E(r,t) is real we have

8(r,-w) - £(r,c)* (2.2)

Similar notations apply to B(r,t) and P(r,t). In the Fourier domain Maxwell's

equations read

V.< + /L1o0 - o  , V.f-o

(2.3)

V X - iWA V X -1 -i- + P/C-- ' - 2 0 I o
c

which should hold for all r and w.

In the regions z > 0 and z < -4 the polarization density is zero.

Inside the nonlinear medium the P(r,w) is proportional to the electric field at

a different frequency. Explicitly (24], this has the form



f07* t(r,w-2o) , > 0

t~(r~) - {(2.4)
o7 ft(r,23+w) , < 0

where the field I does not include the two pump fields. These are

parametrically accounted for by 7 a I. On the surfaces z - 0 and z - -A,

Maxwell's equations (2.3) imply the usual boundary conditions.

3. Dispersion relation

Before we can solve the scattering problem for travelling and evanescent

waves by this PC, we have to establish the fundamental plane-wave solutions

which are supported by the medium. To this end we first notice that the

polarization density t(r,w) from Eq. (2.4) couples positive and negativ:e

frequencies. If we denote by wi wo > 0 a fixed positive frequency, then

P(r,w) is determined by the electric field component with frequency

W'2 - WI 2W (3.1)

The polarization at this negative frequency w2 = -w is then proportional to the

electric field at 2w + w 2 - W I, according to Eq. (2.4). Hence the nonlinear

interaction couples positive and negative frequencies w1 and w2 in pairs.

Consequently,for a fixed w Maxwell's equations (2.3) constitute essentially a

set of eight equations, which have to be solved simultaneously.

The third Maxwell equation can be written as

A(rw) - "1V X C(r,o) (3.2)

.I .
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and therefore 8 is known as soon as we have found £, both for w and w2. Then,

- 0 is automatically satisfied. Furthermore, we notice that P is

proportional to 9, although at a different frequency, and so the first Maxwell

equation is certainly obeyed if

V.t(r,w) - 0 , (3.3)

for every w. Next we substitute Eqs. (2.4) and (3.2) into the fourth Maxwell

equation, which yields the set of coupled-wave equations

2 1.2 .

(V2 + (-) 2 -- 7"( ) £( 2 rw2) 1 (3.4)

2 w2 22

(2 + 2-Y CO(_)2  , (3.5)

for the electric field. Equations (3.3)-(3.5) are the basic relations for a

PC. The first one states that the fields are transverse, and (3.4) and (3.5)

show that a wave with a positivie frequency w I couples to a wave with a

negative frequency w2' and vice versa. Therefore, a positive-frequency field

generates a negative-frequency field, which is the essence of a phase

conjugator.

As a plane-wave solution we try

ik *r

a(r'wl) - Ea e , (3.6)

ik *r

(r'w2) " aa e ~a - (3.7)

Y IV K
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Then Eqs. (3.3) -(3.5) give

k a E a-o0 (3.8)

ka 2- k 2(1 + 7*"a) k 2P2 (1 + I/" ' (3.9)

where we introduced the wave number

and the dimensionless detuning parameter

p 2~w1  - 1 .(3.10)

iquaLiohl (31.8) state. that plane waves in a PC are transverse, and the last

equality in Eq. (3.9) gives an equation for the amplitude ratio " a between the

Wand the w component. Because Eq. (3.9) is quadratic in q a, it admits two

solutions. For ceasons which will become clear in due course, we choose the

solution

, (2 2 2~ 2 2 (311
7a (P 1-((p -1) + 4-y P ) )/2 y* (.1

with

7 oe7 >0real (3.12)
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- sgn(w-o1 ) - sgn(p-1) (3.13)

The solution corresponding to the second root for a will be written as

Pb(r,wl) - 1bEb e , (3.14)

' (r, 2) - Eb e ,k (3.15)

which obeys Maxwell's equations if

kb.Eb- , (3.16)

(1 k02(l + 'b ) - k2(1 + 7*/nb) (3.17)

Of the two possible solutions for 'b we have to take

2 2 2 22

tb =(I - 2 + ((p2 -1) + 4-y 0 p ) /27p (3.18)

With this convention we havP va - O, 9b - 0 if -0 , and the a and b solutions

become (uncoupled) wI and w 2 waves, respectively, in this limit. For - 0 0 the

parameters q a and "b determine the relative strengths of the coupled waves with

the complementary frequency, which are excited by the four-wave mixing process.

Furthermore, we notice that the coupled waves t a(r,w 1 ) and t a(r,w 2 ) have the

same wave vector ka, which implies a perfect phase matching between these two

waves at different frequencies. The same holds for the b-solution.
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Now we can substitute the expressions for qa and "b into Eqs. (3.9) and

(3.17), which gives the wave numbers ka and kb (up to a minus sign). Notations

can be simplified considerably by the introduction of the quantity

(- 2(p2+l-6((p 2 1)2 + 4-y 2) }  (3.19)

Then we find in terms of E

2 22 (3.20)

ka =k LC kb k (p +l-0 3.0

2
?a - (--)/y* , ('-e)/7p (3.21)

If the medium would be an ordinary dielectric, we would also have k2 - k2 e, but
a

with e as the dielectric constant. An important difference is that in Eq.

(3.19) the e depends explicitly )n the frequency w I through the parameter p.

This frequency dependence is a genuine geometrical effect, as it follows from

the mechanism of four-wave mixing (rather than from a frequency dependence of

(3)
, which we have suppressed). Therefore, Eq. (3.20) gives the fundamental

relations for the two branches of the dispersion curve for a four-wave mixing

PC. This universal dispersion relation is plotted in Fig. i. We remark that

e, as defined in Eq. (3.19), is real (possibly negative). If the frequency

(3)
dependence of X would have been retained, then e could also have an

imaginary part. Furthermore, we notice that e is discontinuous across the

resonance w 1 w, or p - I, due to the appearance of 6.

% %

%L"LA
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4. Incident field

A given external field illuminates the surface z - 0 of the PC. Since

almost every field can be expanded in plane waves, and since Maxwell's

equations for this PC are linear (even though the four-wave mixing process is

not), it suffices to consider an incident field of the form

ik-r

inc(,l) - E.inc e -
(4.1)

defined in the region z > 0. The corresponding B field follows from Eq. (3.2).

In Eq. (4.1) the polarization and amplitude Einc, and the wave vector k are

arbitrary, with the only restrictions

k.E. - 0 k= k.k - (w,/c)2  (4.2)

according to Maxwell's equations in z > 0.

With the unit vector e as the normal to the surface, we can decompose k-z

into its parallel and perpendicular components with respect to the xv-plane.

We write

k- k +k e (4.3)

and similarly for any other vector quantity. Combining this with Eq. (4.2)

gives

2 2 2
k2 -k (4.4)

%
z-• - |I ..
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The quantity k2 is a given positive number for a fixed wIl but the components

11 and kze of k can be anything, as long as restriction (4.4) is satisfied.

For most practical cases it is sufficient to consider only real-valued vectors

11, and this will be assumed from now on. We shall regard the quantities k -

Wl/c > 0 and k1 as given, but arbitrary. Then, the right-hand side of Eq.

(4.4) is a given real number, and there are two possible solutions for kz .

Because the external field is generated by sources in the region z > 0, we have

to choose the causal solution, which is

-4k-k 1  , if k >k 1

kz - { (4.5)

-ijkj )k if k < k

F

where k 1 - "jIk > 0. For k > kii the kz is negative and real, corresponding

to an incident travelling plane wave from the region z > 0. In the case k <

klj, kz is imaginary, and the root is chosen in such a way that the wave decays

exponentially to zero in amplitude in the negative z-direction. This

evanescent wave decays in the direction perpendicular to the surface, and

travels along the surface in the ki-direction.

5. Fields

The incident field 9inc (,w 1) induces a nonlinear polarization in the

medium, which in turn emits radiation according to the coupled-wave equations

(3.4) and (3.5). This radiation travels out of the crystal and gives rise to

reflected and transmitted waves by the layer. It will turn out that the fields

I
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everywhere in space can be expressed in plane travelling or evanescent waves,

depending on k and k11. Every wave a will therefore have a spatial dependence

of E exp(ik .r). Transversality then requires

k .E - 0 , (5.1)

for every wave. Since the waves must be matched across the planes z - 0 and z

- -6 with the aid of boundary conditions, which should hold for all r in z - 0

and z - -A, all wave vectors must have the same parallel component. Therefore,

we have

k - k + k e (5.2)

and only k, z remains to be determined. On the other hand, the dispersion

2 _ 2 2
relations in vacuum and in the PC fix the value of ka - k 1 + kaz

Consequently, the only freedom we have left is the choice of the sign of 'C
a,z

In the regions z > 0 and z < -A this sign is determined by the requiremen that

the waves must emanate from the PC, in the same way as we found the sign o' k z

For the fields inside the PC there is no a priori way to fix the signs of the

z-components of the wave vectors, and therefore we have to retain all possible

combinations. We shall only write down the expressions for the electric

fields. Then, the magnetic fields can be found from Eq. (3.2).

5.1 Region z > 0

From the arguments above it follows that the most general plane-wave

solution in the region z > 0 is given by

4,



ik.r ik *r-Er'l - inc e - -+ E r e ~r - ,(5.3)

ik •-r

-(r,w2 E P e ik' (5.4)

At frequency wI there is only one other possible wave, which is the specularly-

reflected r-wave with

k r - k , kr, z - -k z  (5.5)

Although this field resembles the reflected wave by an ordintry dielectric, it

is here entirely generated by the four-wave mixing process (we have set X( ) -

0). At w2 we have the phase-conjugated pc-wave with

kpc - -w2/c > 0 , (5.6)

k2 - k 2 - k - k 2 2 
- k2  (5.7)

pc,z PC 11 11

Because w2 is negative, the pc-wave travels in the -k direction if kpc,z is

real. In the case of an evanescent pc-wave the wave should die out in the

positive z-direction. Consequently, the root should be taken as

22_ 2-/k p -ki , if kP > kii

kpc,z - _ (5.8)

i/kll-k 2 2 , if kp < k .
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Then it remains to determine E and E-r -Pc"

5.2 Region 0 > z > -A

Inside the PC the fields are combinations of a- and b-solutions, and we

have

S ik .r ik . r+ ik .0  _ i . _

+-e +E e + b. e-e +l bF e * (5.9)

(, -aEa - - a +7- + b -

_ _ - e+ + e r + - e E e (5.10)
2 "aEa "a-a e -b

The values of ka and k are given in Eq. (3.20), and for the z-componencs of

the wave vectors we write

ka, k I  (5.11)
a,z

k ,z-± k 2  (5.12)

with

k- (5.13)
1 a

k 2  2 k 2 (5.14)

The roots are taken (arbitrarily) as

OV. A
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kI - { (5.15)

2_22 2i a i a <

2 ~ 2 2

k 2 - { (5.16)

5.3 Region z < -A

The only waves which travel or die out in the negative z-direction are

ik.r
(,) - t e (5.17)

ikn. -r
(r,w2 ) -En e (5.18)

where the wave vector of the transmitted (t) wave is the same as the incident

wave vector. Furthermore, there is possibly a nonlinear (nI) wave of frequency

W20 which has

knl,z -- kpc'z (5.19)

Figure 2 illustrates the various occurring waves.

e ., ,,wp , . ' , W, w . *
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6. Polarization and Fresnel coefficients

According to Eq. (5.2) every (complex-valued) wave vector k lies in the

plane of incidence, spanned by the (real-valued) vectors k and e . The

ampliude-polarization vectors E can be decomposed into a surface (s) polarized

and a plane (p) polarized component, which are perpendicular to and lie in the

plane of incidence, respectively. Since E is restricted by k .E - 0, the

only ambiguity in a decomposition along unit s- and p-polarization vectors is

the choice of the phase of the unit vectors. We take

%as ki - -)
~-- (ke 61

-lp klk z k , (6.2)

and it is easy to check that e, Pe and k /k constitute an orthornormal set

of unit vectors for every a. Notice that e is defined as independent of a

and is real. The p-polarization vector can be complex. For all waves only the

value of k 2 (real) is prescribed by the dispersion relation, and we take the
a

square root as

k2>O 2
.k , ifk >0

k (6.3)

a a

It can be proven that every wave is an s(p)-wave if the incident wave is an

s(p)-wave. Therefore, we can distinguish between two cases and write

.9
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E -E e , a - s or p , (6.4)

for every a. The simplification lies in the following relations for the

z-components of E :

Ea, z - 0 s waves

(6.5)

E , p waves
a,z kaa

Then the Fresnel coefficients Xa (Y ) for s(p)-waves are defined as the ratio of

E and Einc, or equivalently the amplitudes E are written as P.
a -ac C

E - X E. e , for s-waves

-a a inc -as

(6.6)

E - Y E. e for p-waves
-- a inc -ap'

The amplitude Ein c of the incident field is a given quantity, and the unit

polarization vectors e are geometrically determined. Therefore, knowledge of

X and Y for every wave a determines the scattering of any wave by the PC.

7. Solution

Maxwell's equations (2.3) state that at the boundaries z - 0 and z - -A

the tangential component of E, the normal component of E + P/c0f and the B

field must be continuous, both for w and w 2  In matching the fields in the

three regions across the boundaries, we can evaluate all E 's, and the results
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can be expressed in terms of the Fresnel coefficients X and Y for s- and p-

waves, respectively. It is convenient to express the Fresnel coefficients in

dimensionless quantities, rather than in wave numbers. Besides p and c we

introduce

u - -kz/k , (7.1)

which allows us to write for the parallel components

k 2 _k 2 (l-u2) (7.2)

For a travelling incident wave u is real, restricted by 0 < u < 1, and u equals

the cosine of the angle of incidence. If the incident wave is evanescent, then

u is positive imaginary. Furthermore, we define dimensionless wave numbers by

m* - k /k , a - a,b,l,2 , (7.3)

mp - kpcz/k (7.4)

and the layer thickness d in units of a wavelength of the incident radiation

d - k&/21 (7.5)

Due to boundary conditions at z = -A, phase factors appear which can be

expressed as

-l -27rdml 02- 2ndm2

11111 i A111 Q
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(7.6)

3 - 2rdu .4 - 2rdm

For travelling waves these phases are real, and for evanescent waves they are

positive imaginary.

After laborous computations, it follows that the Fresnel coefficients can

be expressed in terms of eight dimensionless parameters xi, Yi, i = I. 4 as

follows:

e - xl I X- x
aa 2

Xj -X3  'Xb,-x 4

X r - x1 + x 2 + b(X3 +x 4 ) -

Xpc -a (xl+x2) + x 3 + x4

Xt -e 3x1ei1 + x2 e + 17b(x 3e +x4 e 2

X - e ' q(xe +x e i i+ 2

n)a 1 2 +x 3e +x 4e

a MaYl ' a - 'aY2

Yb " rubY3 Y b " rubY4

r - Ma(yl+y 2 ) + %bb(Y3 +Y4 ) 1
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I 2

PC a a a(yl+y2) + mb(y3+y 4)) ,

2 3 (i(3 (Ylei1Yei 1 2 e"2 e"2

e y +Y2  + rbmb(y3e +Y4e2)

Y -1 I 2 (ye oI e -il )+2 e- i2 e 'O2(7)-I e i ama(Ya e +Y2e b) m(y 3e 2+Y4e2) . (7.7)

Here, the parameters xi and yi for s- and p-waves, respectively, are solutions

of the linear sets

2u y, 2u2

2  IY2

P x3 - 0 Q Y3 0 (7.8)

x 4  0 Y4 0

where the matrices P and Q are given by

u-rn u+M1  q(u-m2) rb(u+M 2 )

?7a (mP- ml) 17a(mp +) mP-m 2  mp+m 2(m W~il -i~l i '2 W 2 /

P -(m1+u )e (m 1 -u )e - 1b(M 2+u )e ?2 b (m 2 -u )e 
i 2

-qa(ml+mp)e  ?a(m-mp)e  -(m 2+mp)e'-i2 (m2 -mp)e 2

(7.9)
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ml(m -u) - (l-u2 )(m2-l) ml(ml+u) (-u 2)(m2_ 1)
1 2- 2 a

17a (m(2 2p (lu 2 )((ma/p)22 Ia emaIm(ml+mP (l-u2)((ma/p) 2_

e -e (m-+U) (1-u 2)(ma-) e (mpm U) (I-u

ql ae (mlm1--+m) (1-u 2)((ma/P) -1)) qae (m(m 1 ) - (I-u 2)((ma/p) i)

1 (m2(m2u) (1-u 2)(2l)) %bm2 (m2 +u) (1-u 2)(- )
lb2 2 bq 2 2 m

m2 (m2 -mp )  (-u 2)((mb/p)2-1) m2(m2+m) - (1-u 2)((mb/p) 21)

i412 2 2_ i2 2_

1bei (m2 (m2+u) - (i-u )(-1)) b e  (m2 (m2 -u) - (1-u2 )(%bI))

e- i 2 (m2(m2+m) -(l-u 2)((Mb/P)2 1)} e i 2 (m2(m2mp (l-u2)((mb/P)2-)

e~ 2 2 )(l ~ 2 2- 2

(7.10)

The sets of equations from Eq. (7.8) can readily be solved analytically, but

the resulting expressions are lengthy and, in turn, not transparent.

Numerically, one solves the sets directly, rather than inverting the matrices P

and Q.

8. Special case

Although the results of the previous section apply to any situation, in

many practical cases the solution can be simplified considerably because of

restrictions on the order of magnitude of various parameters. It is

elucidating to work out a special limit in order to reveal the fundamental

structure of the Fresnel coefficients. If the incident field is a visible

narrow-bandwidth laser and exactly on resonance with w, then the relative

detuning is of the order of jp-li - 10 8. Furthermore, the nonlinear coupling
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parameter Yo has an order of magnitude of 10 - 10 even for very strong CW

pump fields. In this section we consider the limit 70 - 0 (weak interaction)

and p - I (resonance), which implies << ju 2 I and lp-11 << ju2 . First we

expand the matrices P and Q up to leading order in p - I and 70, and in the end

we take the limits. For this situation the amplitude factors are related by

b - "(8.1)

and q a equals

ea -eio(l O + 6i + (-0) 2  , (8.2)

which is not necessarily a small parameter. Equation (8.1) expresses that the

coupling strength between the two fields of the a-solution equals the coupling

strength between the two components of the b-solution. This must be so in this

limit, since p =1, - - 0 implies k' a= k and consequently the two branches of

the dispersion relation coincide.

8.1 Travelling waves

For 0 < u < 1 the incident field is a travelling wave. In lowest order we

find for the relative wave numbers

m- m - 2 - -u (8.3)

m a " "b 1p,1

ID -m,-
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and the Fresnel coefficients are found to be

X Y a )b - Yb - Xr = Yr " XnI Yn= 0 (8.4)

X+ .+ - i___ _

a a 12 i( i+0 2 )

I + 1a 2 e-

( 2 ) i + 1? 'aa 2

Xt "Yt "eei((2+0+3) 
+ la 2

-i ( 1 (+ 2 )
2) 2e + 11la1

e 2) + 17a 2 (l-e 2 )

x - -Y ''a~ (8.5)
PC PC a i(Oi+-2) _i(Oi+0 2)2(1+I2) 2  a 2  .

ae )(e +Ia al

This limit has several remarkable features. First, the Fresnel coefficients

for s- and p-waves are identical, and therefore the scattering process is

polarization independent. Second, the specularly-reflected wave disappears,

and hence the field which is reflected back into the region z > 0 consists

entirely of the phase-conjugated signal with respect to the incident beam

(times a factor). Third, the structure of X is completely determined by
pc

phase factors, in the combination

I + 2 "21rd(m m2) . (8.6)

iN

VS.~ ~ 2 1 2 
4  

~N. % N%.~~ . . ~ j V ~ ~ -

N V~%



2 4

According to Eq. (8.3), we have m1  m2 - 0 in first order in p-i and 70, which

would make I + ?b2" 0 and thereby X = 0. However, m - m2 is multiplied by

the relative layer thickness d. For an interaction region of a few

centimeters, we have d - 105 and I + 42 P 0, even in lowest order. Since m

and m2 are the relative wave numbers (of the z-component) of the a- and b-waves %

in %
in the PC, respectively, we conclude that the phase-conjugated signal is

brought about by constructive interference between the a- and b-modes of the

PC.

If the incident field is in very close resonance with the setting w of the

PC, then we have

a 6e' a - 1 (8.7)

(More precisely: if rp-ii << 70 ). Under this condition the X reduces to

X P =i17 ata 1+2) (8.8)
am

and the PC reflectivity becomes infinite for

01 + 02 - (2n+l)r , n integer , (8.9)

which is the famous resonance condition [3].

Even if ho-1 is not much smaller than 70, the denominator of Xpc, Eq.

(8.5), has still a resonance at the solution of

e - - , 
(8.10) %

r v-
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which leads again to condition (8.9). With 6 as the angle of incidence, we

then find that the PC is resonant for layer thicknesses

d - (n+h) 2 2 n - 0,1,2... (8.11)
j(1-P)

2 + 702

At the resonance the value of X is found to bePC

X - ,2 a (8.12)
pc 1 -l 'a'

and in between resonances, where exp(i(Ol+12)) - 1, we have X = 0. This

resonance behavior is illustrated in Fig. 3.

An important conclusion is that when a PC is resonant for radiation under

normal incidence (0 - 0), it is off-resonant for radiation which illuminates

the surface under a finite angle. In spectroscopic applications, where the

incident field is dipole radiation, all plane-wave components strike the PC at

a different angle, and therefore, this device cannot operate as a perfect phase

conjugator for the entire field.

8.2. Evanescent waves

For an evanescent incident wave we have

mp - -m -m - u (8.13)

and the Fresnel coefficients become

4 %"*~ ~*~* .*i ~*V -B~ ~ ,,; ~ '. ~ ~ 1
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Xa Xr - Xpc 0

X+ 1 1a

a 1+ Ia' 12 Xb +17aI 12

1 2 (e 1 + 1ia' 2e ao2

1 + 1a

X n2 i 0 l a 2  
17
a (e  - o 2 (8 14)

and the same expressions hold for p-waves. We notice that there is no

reflection at all back into the region z > 0. Furthermore, if the layer

thickness d is much larger than the penetration depth 1/lul of the waves, then

the fields in z < -A also vanish. We conclude that there is hardly any

reflection of evanescent waves in the limit p - i, 70 - 0. In Fig. 4 we

compare the Fresnel coefficients IX PCI for travelling and evanescent waves.

For evanescent waves the nonlinear interaction region is limited to the

penetration depth, which is a few optical wavelengths. The PC cannot generate

much radiation in such a thin layer, which explains the very small values of X r

and X in this case.
pc

9. Resonances

In the previous section we found that IX pcI acquires extreme values if the

dimensionless layer thickness d is related to the angle of incidence 0, the

detuning p and the coupling parameter 7. according to Eq. (8.11). These

'1 ,M
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resonances appear due to perfect phase matching of the a- and b-waves in the

PC, as expressed by Eq. (8.10). For Ip-li << 0 we have ''al - 1, and then

IxPCI becomes infinite, as follows from Eq. (8.12). Beside these interference

resonances, a PC has a different kind of resonances which appear if we allow

the angle of incidence to be nonzero and the waves to become evanescent. If we

solve Eq. (7.8) for the eight parameters x I,..., x4 P yl .... Y4, then the general

expression for every parameter is a 3 x 3 determinant (because of the zero's on

the right-hand sides), divided by det(P) or det(Q). Resonances then occur for

values of p, u, 10 and d at which det(P) and det(Q) is very small. For

instance, in the limit of section 8 we have

det(P) - (2u)4 (e io2 + 17a 1 (e- 1 + ?a12 2 (9.1)

for travelling waves, and

det(P) - (2u)4 (1 + ,a2)2 e" (9.2) 

for evanescent waves. Then it is obvious that the right-hand side of Eq. (9.1)

has a minimum if the phase-matching condition (8.10) holds, whereas the right-

hand side of Eq. (9.2) has no pronounced minima.

Without proof we state that the second kind of resonances can appear there

where one of the generated waves turns from a travelling wave into an

evanescent wave, or equivalently, at the branch points of the square roots

which define the z-components of the wave vectors (section 5). From the

2
expressions of section 5, in combination with relation (72) for k, we find

that the various waves are evanescent under condition:
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r-wave U < 02

pc-wave : u < i -p

a-waves : < i E

b-waves: u < E p (9.3)

2 2 2 2 2
Then the resonances are located atu - , u - p , u 2 1 - and u 2 -

p2 Most obvious is the case u - 0, or u - 0, for which det(P) must be small

according to Eqs. (9.1) and (9.2). We notice that the right-hand sides of

(9.3) depend only an 70 and p, and not on u. For fixed 0 and u, the

resonances appear at a certain detuning p between w of the incident field and

the PC setting frequency W. For 70 and p fixed we can regard the resonance

conditions as an equation for u (angle of incidence or inverse penetration

depth) at which Ix pcI and the other Fresnel coefficients have sharp peaks. We

notice that the positions of the resonances are independent of d, in contrast

to the resonances of the previous section.

Let us take p and 70 fixed, and consider the behavior of the Fresnel

coefficients as a function of u. Then the resonances are located at u - ures'

where the ures 's are solutions of

2 2
pc-wave : Ures li p

a-waves : Ures

b-waves : 2  - - 2 (9.4)
res

provided that the equations have a solution in the range of u. We have

suppressed the case u - 0, since the corresponding extrema are minima. The

2. 2
right-hand sides of Eq. (9.4) are real, and the range of u is -- < u < 1i. To

see the physical significance of the resonance conditions, we look at

I. ...... / i % F " ..- " ." , -',' ,T, ..' .,L" " i
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u - I - P 2 for the pc-wave, and the same picture will hold for the a- and b-res

waves. If 1 - p2 > i there is no solution, and the Fresnel coefficients will
2i

vary smoothly as a function of u. For 0 < I - p < I there is a solution with

0 < u2  < 1, which implies 0 < u < 1 because the u-values are restricted by
res res

0 < u < 1, and u - iv with v > 0. This situation corresponds to a travelling

incident wave with u - ures. For u > ures the pc-wave is a travelling wave,

and for u < ures the pc-wave is evanescent. Exactly on the transition between

the two situations, the Fresnel coefficients have a sharp resonance. In the

case that 1 - p 2 < 0 we write u - iv and the solution is v - (p -1)cae ht <0wewit re s  res' res

Then the incident wave is evanescent, and the pc-wave is evanescent for v >

vres and travelling for v < vres. We notice the remarkable fact that an

evanescent incident wave can be reflected by the pc as a travelling wave.

In Figs. 5 and 6 we have plotted Ix P for a travelling and an evanescent

incident field, respectively. Curves a and b correspond to Wi/W - 1.05 and

i/Z; - 0.95, which gives p - 0.905 and p - 1.105, respectively. We chose the

value 0.05 for parameter y. Then the solutions of Eq. (9.4) are for curves a

pc-wave u - 0.43

a-waves v - 0.10

b-waves u - 0.44 , (9.5)

and for curves b

pc-wave v - 0.47

a-waves u - 0.11

b-waves v - 0.48 (9.6)

6 'i k2
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For a travelling incident wave with wI > w, there are two resonances as a

function of u, and for an evanescent incident wave with w I > w there is only a

single resonance as a function of v. If w < w there is only one resonance for

a travelling incident wave, but two for an evanescent wave. If p - 1 and -y 0

then the two resonances are always very close together. This can be understood

from the fact that e is very close to unity in this limit.

10. Specular reflection

Ir the limit of a weak interaction (7 0), in combination with close

resonance (p - 1), the Fresnel coefficients for the specularly-reflected waves

at the incident frequency w1 are vanishingly small (section 8). For large
220

angles of incident 0, the parameter u2 - cos 2 (travelling incident wave) can

be on the order of 70 or Ip-li, in which case the approximations of section 8

are not accurate. Since the specular wave is also reflected back into the

region z > 0, it will interfere with the pc-wave, and therefore we cannot

neglect this component in the situation of grazing incidence. Figures 7 and 8

illustrate the behavior of IXrI for various angles of incidence. For 7 - 0 and

u = 1, IXrI indeed disappears, but for u - 0 the value of IXrI approaches

unity. Phase matching between the a- and b-waves in the PC is again

responsible for the oscillatory behavior of IXrI as a function of d.

11. Conclusions

We have studied the scattering of travelling and evanescent waves by a

phase conjugator in the four-wave mixing configuration, without restrictions on

the angle of incidence, the interaction strength or the frequency detuning with

the pump beams. The Fresnel coefficients for the various waves were derived

from Maxwell's equations, subject to the appropriate boundary conditions,

NA



without the usual slowly-varying amplitude approximation. It was shown that in

the limit of weak coupling and perfect resonance, the reflection coefficient

for the pc-wave reduces to the well-known result (8.8), which implies the

resonance condition (8.9) for a four-wave mixing PC. We were able to track

down the origin of these resonances to perfect phase matching between the two

(a and b) modes of the PC. In addition, we found strong resonances at these

values of the parameters where one of the waves (a, b or pc) turns from a

travelling wave into an evanescent wave. We were not able to find a convincing

physical explanation for these resonances, but from numerical examples it

follows that they are definitely present. Finally, we showed that for large

angles of incidence the nonlinear specularly-reflected wave has an amplitude of

the same order as the pc-wave.
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Figure caotions

Figure 1. Dispersion relation for a phase conjugator. Curves a and b are

ka /k2 and /k2, respectively, as a function of wi/w, and the coupling

parameter is 70- 0.2. The discontinuous behavior around w w comes from the

choice of the roots in the definition of "a and "b"

Figure 2. Schematic representation of the various waves from section 5. The

arrows indicate the wave vectors, which all have the same parallel component

kI(" Their perpendicular components are approximately the same, apart from

the sign. The inc-, t- are r-waves are l-waves and they travel in the

direction of the wave vector. The pc- and ni-waves have a frequer.cy W 2 < 0,

and therefore they travel in the direction opposite to the wave vector. This

is indicated by a circle on the arrows. Inside the PC we have four different

wave vectors and every vector corresponds to two fields according to Eqs. (5.9)

and (5.10). The a+ and a- fields are essentially wl-fields, and the b+ and b-

fields are negative-frequency waves. For I o 0 these principle waves couple to

a field with the same wave vector but with a frequency of opposite sign. These

fields are indicated by broken arrows. The wave which couples co the principle

wave always propagates in the opposite direction.

Figure 3. Absolute value of the reflection coefficient for the pc-wave with s-

polarization for u - I and 7 - 0.05, as a function of the layer thickness d.

Curves a, b, c and d correspond to wI/w - 1.006, 1.01, 1.05 and 1.1,

respectively. The peaks result from interference between a- and b-waves, and

the positions of the peaks are given by Eq. (8.11). For larger detunings the

peaks shift and become less pronounced, in agreement with Eq. (8.12). In the

limit WI - w, curve a turns into an extremely sharp resonance.



Figure 4. Reflectivity for the phase-conjugated wave as a function of d. The

parameters are 0 - 0.05 and w /w - 1.01. Plot a corresponds to a travelling

incident wave (u - 0.25), and curve b represents an evanescent field (u -

0.25i). The sharp resonances in curve a originate again from phase

interference, and their position is given by Eq. (8.11). It is seen that the

reflectivity for an evanescent wave is almost negligible, as compared to a

travelling wave.

Figure 5. Absolute value of X as a function of u for I - 0.05, d - 5 and

Wi/ - 1.05 (curve a) and wi/ - 0.95 (curve b). The two peaks in curve a are

situated at Ures - 0.43 and Ures - 0.44, and they appear because the pc-wave

and the b-wave become evanescent for lower values of u. In curve b the left-

most peak corresponds to an evanescent a-wave for lower values of u, and the

other peak is a phase-matching interference from section 8.

Figure 6. Same as Fig. 5, but now as a function of v - -iu. For v larger than

the resonance of curve a the a-wave is evanescent, and for v larger than 0.48,

both the pc-wave and the b-wave are evanescent, which gives rise to the peaks

in curve b.

Figure-7. Reflection coefficient for the specular wave as a function of the %

normalized layer thickness d. The parameters are wi/w - 1.01 and 7 - 0.05.

For curves a, b and c we took u - 0.2, 0.25 and 0.45, respectively. It is seen

that IXrl is not small for large angles of incidence.

Figure 8. Same as Fig. 7 but with u - 0.01 and 0.1 for curves a and b,

respectively. In the limit u - 0, IXrI approaches unity, except at the sharp



valleys, which corresond to a perfect phase mismatch between the a- and b-

wave s.
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